
Profilo del microbiota intestinale nelle prime epoche della vita e sviluppo di patologia immuno-mediata

Il pediatra e l'immunità

Viaggio attraverso i più comuni disordini immuno-mediati dell'età pediatrica

Presidenti: Professor Salvatore Cucchiara, Professoressa Marzia Duse

Roma 28 febbraio - 1 marzo 2014

Mauro Calvani

Azienda Ospedaliera S. Camillo-Forlanini U.O.C. per il Governo Clinico in Pediatria ed Ematologia Pediatrica Roma

Il microbiota intestinale

Sviluppo del microbiota intestinale

Funzioni del microbiota intestinale

Rapporti con le patologie immunomediate

Possibili implicazioni terapeutiche

Il microbiota intestinale

o del microbiota intestinale

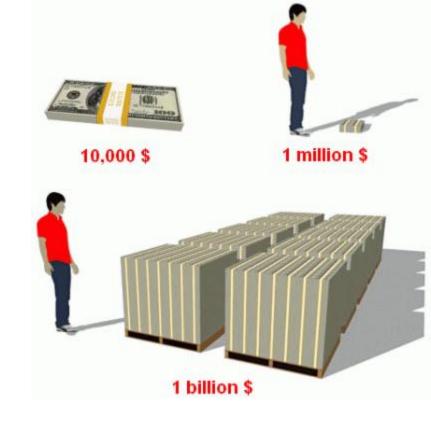
Funzioni del microbiota intestinale

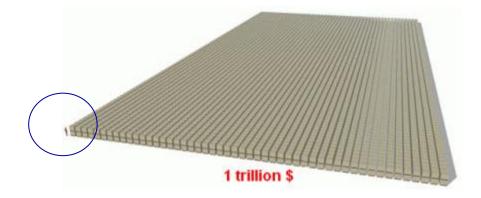
Rapporti con le patologie immunomediate

Possibili implicazioni terapeutiche

Microbiota Intestinale

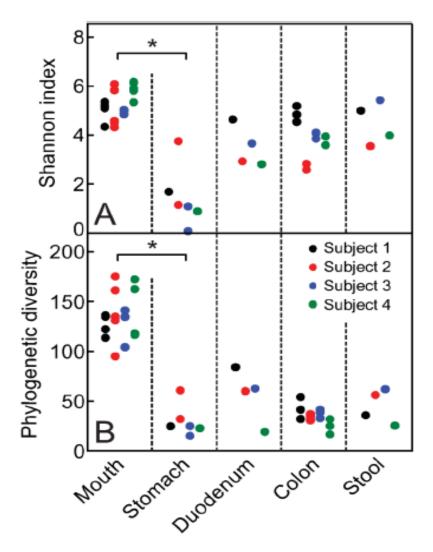
Precedentemente chiamata "flora batterica intestinale" o "microflora", è l'insieme dei microorganismi che si trovano nel tubo digerente


Microbioma Intestinale Il genoma collettivo di tutti i microrganismi che si trovan<mark>o nel tubo digerente</mark> Noi esseri umani, come altri mammiferi, viviamo in associazione con una enorme quantità di microorganismi commensali residenti sulle nostre superfici esterne o interne. Il rapporto tra numero di cellule del microbiota e le nostre cellule somatiche oscilla tra 10-100/1

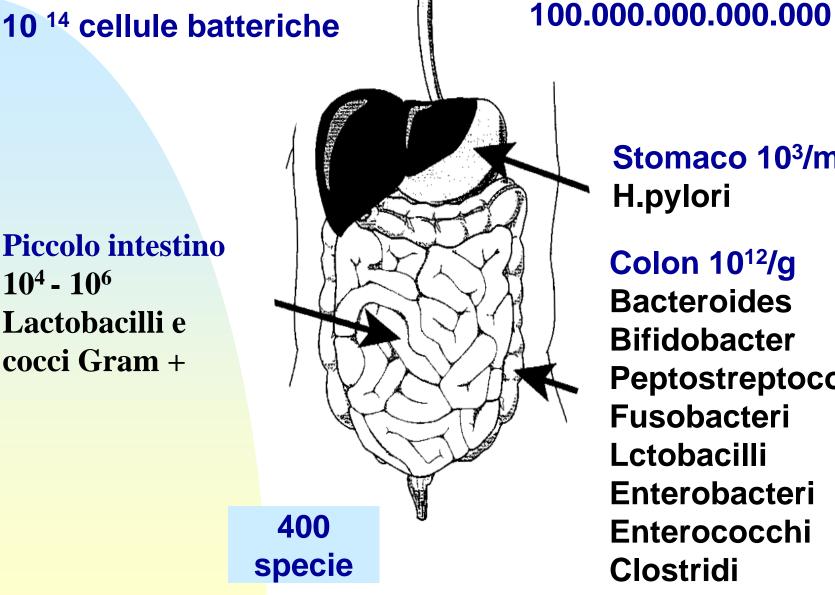

Microbiota predominante

	Sito	Phyla
Phyla	Cute	Actinobacteria Firmicutes Proteobacteria
Classe	Cavità orale	Bacteroides Firmicutes
Ordine		Fusobacteria Proteobacteria
Famiglia	Vie aeree	Bacteroides Firmicutes
Genere		Proteobacteria
Specie	Gastrointestinale	BacteroidesFirmicutesActinobacteria
	Urogenitale	Firmicutes

L'ecosistema intestinale è costituito da 3 milioni di specie o oltre 100 trilioni di microorganismi)


Nell'intestino sono presenti soprattutto 2 delle 55 Phyla oggi conosciute (Firmicutes e Bacteroides) e circa il 15% delle oltre 1000 specie conosciute

Bacterial biogeography of the human digestive tract


La bocca e l'intestino (in particolare il colon) contengono il maggior numero di specie batteriche, lo stomaco il minor numero

Steams JC et al, www nature.com Scientific Report 2011: 1; 170

Microflora Intestinale

Piccolo intestino 10⁴ - 10⁶ Lactobacilli e cocci Gram +

Stomaco 10³/ml **H.pylori**

Colon 10¹²/g **Bacteroides Bifidobacter** Peptostreptococci **Fusobacteri** Lctobacilli Enterobacteri Enterococchi Clostridi

Intestinal microbiota in functional bowel disorders: a Rome foundation report

La composizione del microbiota intestinale varia in funzione di fattori Intrinseci e Estrinseci

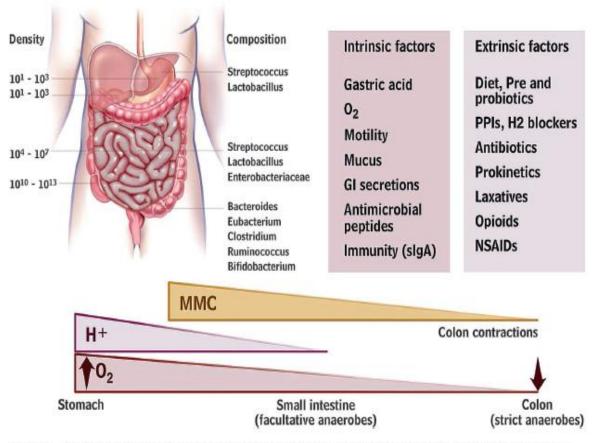
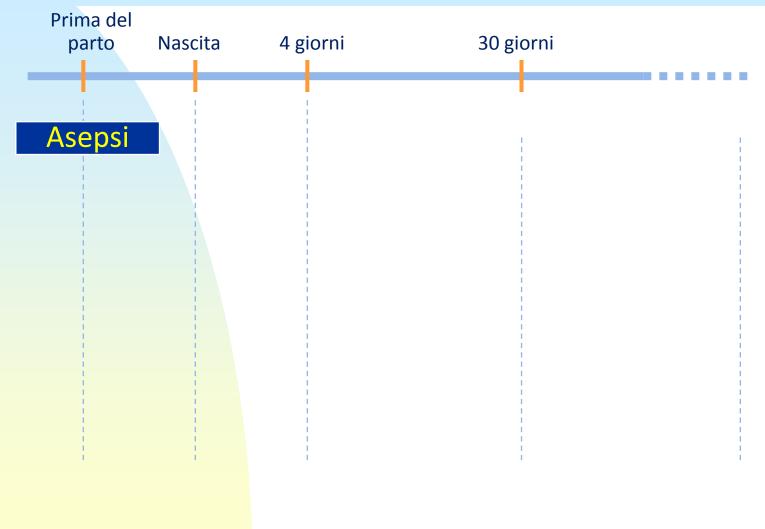


Figure 1 Gut microbiota and the intrinsic and extrinsic factors that can affect its distribution and composition. A

Simren M et al, Gut 2013; 62: 159-76

microbiota intestinale

Sviluppo del microbiota intestinale


Funzioni del microbiota intestinale

Rapporti con le patologie immunomediate

Possibili implicazioni terapeutiche

Sviluppo della flora batterica intestinale

L'intestino del neonato alla nascita è sterile

Development of the Human Infant Intestinal Microbiota

Metodi: 14 bambini sani nati a termine (di cui 2 gemelli) sono stati seguiti dalla nascita fino all'età di 1 anno indagando il profilo batterico dei campioni fecali con una metodica basata su sequenze di DNA ribosomiale a piccole subunità.

Risultati:

- 1) La diversità di Phila è molto limitata. 3 gruppi batterici sono responsabili di oltre il 95% degli isolamenti
- 2) A livello individuale vi è una notevole differenza nel processo di colonizzazione
- 3) Vi è una notevole stabilità nella popolazione microbica nel tempo

Palmer C et al, Plos Biology 2007; 5: 1556-73

Development of the Human Infant Intestinal Microbiota

Risultati:

4) Nei primi giorni di vita si assiste ad una colonizzazione peculiare per ogni bambino e dipendente dal tipo di parto
5) Dal 5 giorno di vita in poi il profilo del microbiota inizia a somigliare a quello di un adulto

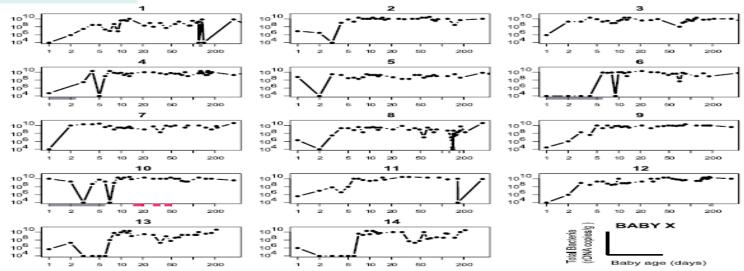
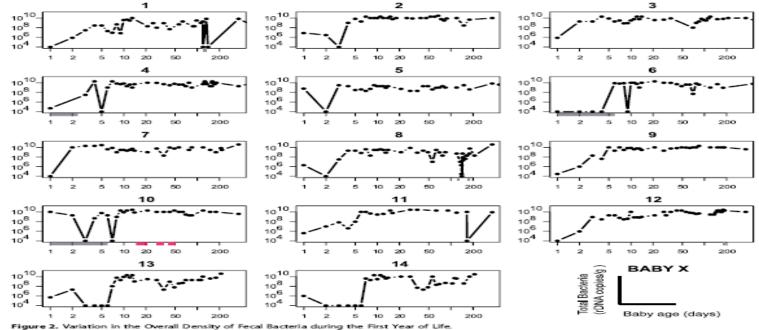



Figure 2. Variation in the Overall Density of Fecal Bacteria during the First Year of Life. For each baby sample, bacterial abundance was estimated by TaqMan real-time PCR with universal bacterial primers. Estimated rRNA gene copies per gram of feces (x-axis) are plotted as a function of days of life (x-axis). Both axes are on a logarithmic scale. Abundance measurements are truncated on the lower end at the value corresponding to the 95th percentile of the extraction (negative) controls (copy number corrected by median stool mass). Episodes of antibacterial or antifungal (nystatin) treatment are indicated on the temporal axis by gray or pink bas, respectively (see Table 1 for additional information).

Palmer C et al, Plos Biology 2007; 5: 1556-73

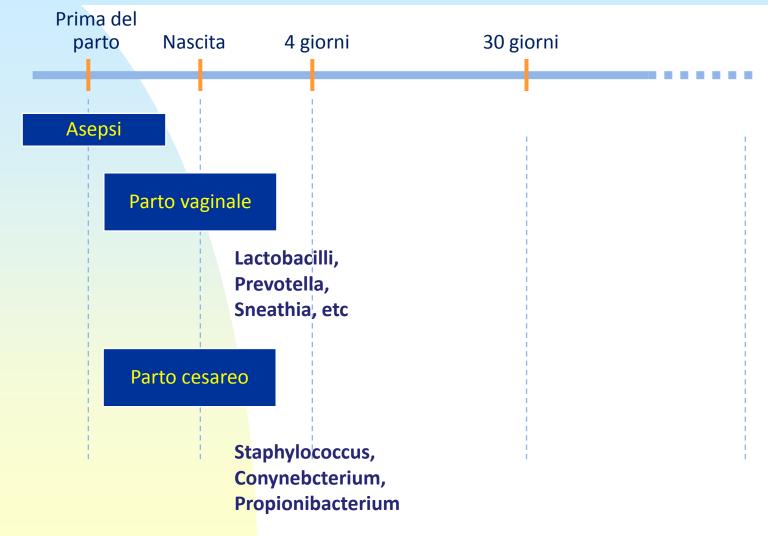
Development of the Human Infant Intestinal Microbiota

A livello individuale vi è una notevole differenza da bambino a bambino nel profilo temporale della colonizzazione, che è invece molto simile nei gemelli

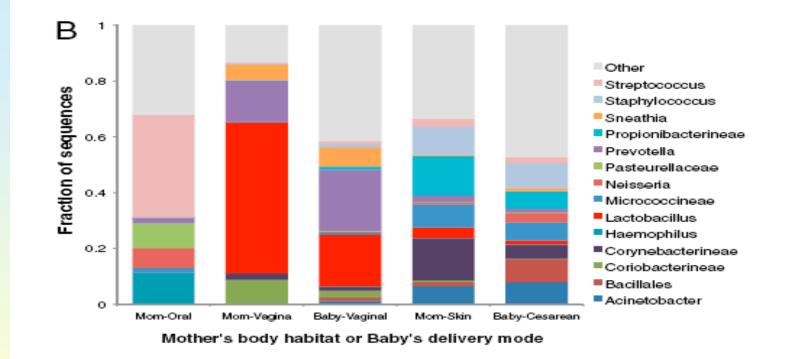
For each baby sample, bacterial abundance was estimated by TaqMan real-time PCR with universal bacterial primers. Estimated rRNA gene copies per gram of feces (x-axis) are plotted as a function of days of life (x-axis). Both axes are on a logarithmic scale. Abundance measurements are truncated on the lower end at the value corresponding to the 95th percentile of the extraction (negative) controls (copy number corrected by median stool mass). Episodes of antibacterial or antifungal (nystatin) treatment are indicated on the temporal axis by gray or pink bas, respectively (see Table 1 for additional information).

Palmer C et al, Plos Biology 2007; 5: 1556-73

Bacterial Community Variation in Human Body Habitats Across Space and Time


Our work also ties together two emerging themes from studies of human-associated microbial communities:

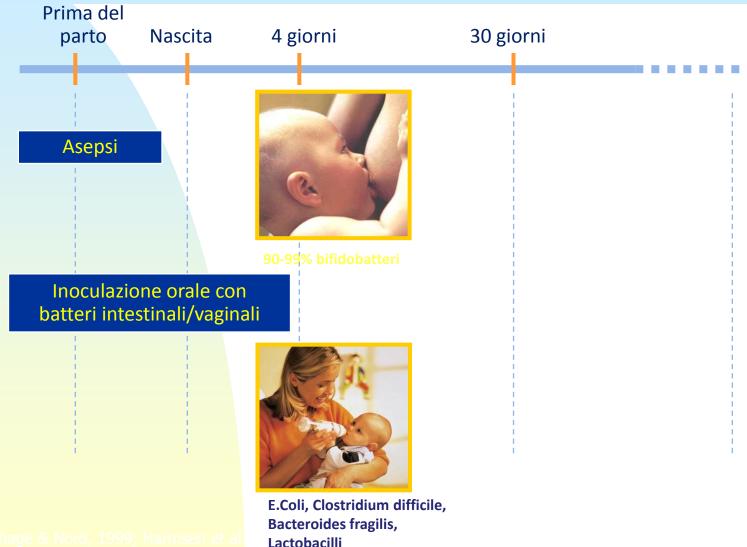
 high levels of variability among individuals in every body habitat studied to date, including the gut, skin, and oral cavity, and
 relative stability within individuals.


Costello EK et al, Science 2009; 326: 1694-1697

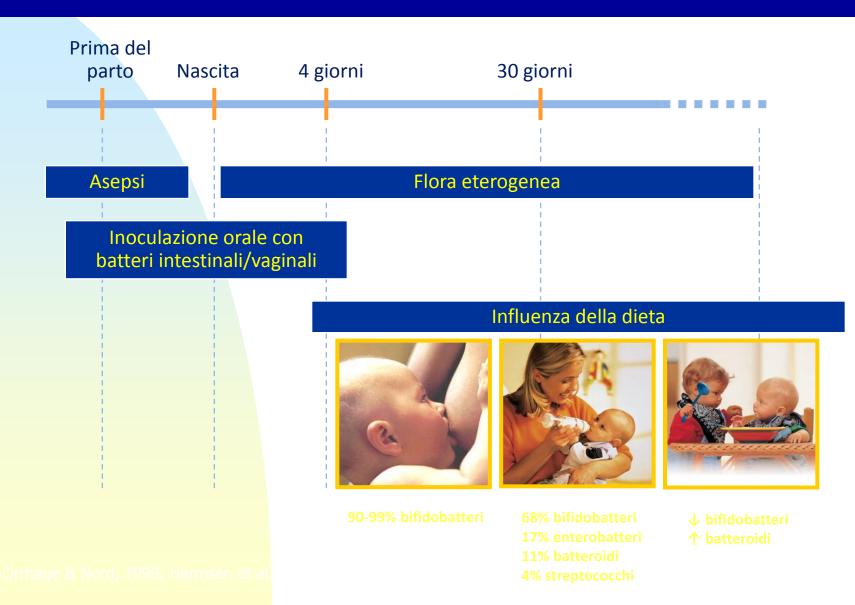
Sviluppo della flora batterica intestinale

Il tipo di parto condizione la colonizzazione microbica del neonato

Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns



A 4 giorni il microbiota dei neonati da parto vaginale somiglia a quello vaginale materno, da cesareo al microbiota cutaneo della mamma


Dominguez Bello MG, PNAS 2010; 107: 11971

Sviluppo della flora batterica intestinale

Il tipo di latte condizione la colonizzazione intestinale del neonato

Sviluppo della flora batterica intestinale

Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy

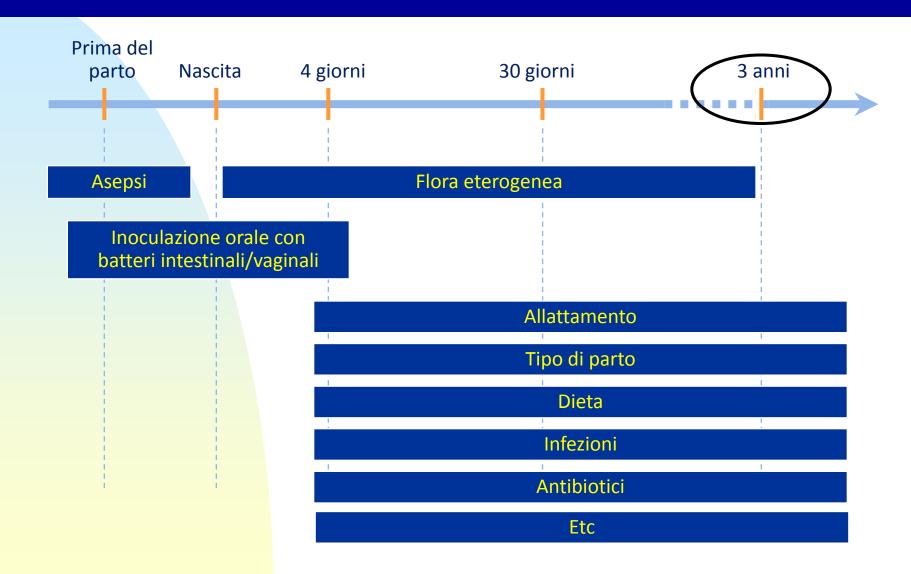
Disegno: Studio prospettico. I campioni di feci di 1032 neonati di 1 mese sono stati analizzati per la ricerca dei batteri, correlandone la presenza con il tipo di parto, alimentazione, età gestazionale, ospedalizzazioni, uso di antibiotici, etc

Risultati: a 1 mese tutti i bambini erano colonizzati soprattutto da bifidobatteri, E Coli e B fragilis, meno da Clostridium difficilis e da lactobacilli

TABLE 2Median Counts and Prevalence of Selected Gut Bacteria in Feces of Infants 1 Month of Age ($n = 1032$)							
	Bifidobacteria	E coli	C difficile	B fragilis Group	Lactobacilli	Total	
Median counts (range), log ₁₀ CFU/g feces	10.68 (6.84-11.56)	9.35 (5.91–10.79)	5.32 (2.70–9.57)	9.28 (5.74-10.44)	8.66 (7.92–10.73)	11.12 (9.43–12.14)	
Prevalence, %	98.6	87.7	25.0	81.6	32.4	100	

Penders J et al, Pediatrics 2006; 118: 511

Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy

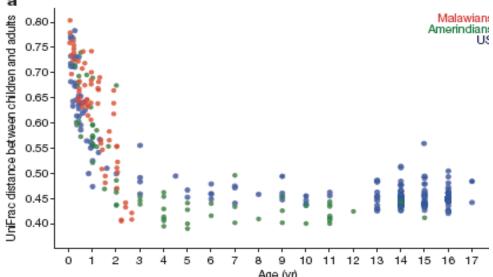

Il cesareo si associa a un ridotto numero di bifidobatteri e di
B.fragilis e a un maggio numero di Clostridium difficile.
La ospedalizzazione a un maggior numero di Clostridium difficile
L'allattamento artificiale si associa a un maggior numero di clostridium difficile, E Coli e b. Fragilis e a meno lattobacilli
L'uso di antibiotici riduce i bifidobatteri e il b. fragilis

	Bifidobacteria		<mark>E coli</mark>		C difficile		B fragilis Group		Lactobacilli	
	Coefficient (P)	OR (99% CI)	Coefficient (P)	OR (99% CI)	Coefficient (P)	OR (99% CI)	Coefficient (P)	OR (99% CI)	Coefficient (P)	OR (99% CI)
Cesarean section (compared with vaginal delivery)	-0.34 (.003) ^a	ND	0.07 (.677)	1.04 (0.38–2.83)	0.88 (.24)	2.07 (1.01-4.25) ^a	-1.36 (<.001) ^a	0.28 (0.13-0.61)ª	0.31 (.032)	0.84 (0.42-1.70)
Hospitalization (d)	-0.01 (.365)	ND	0.04 (.108)	1.00 (0.86-1.17)	0.06 (.364)	1.13 (1.01-1.25) ^a	0.01 (.621)	1.02 (0.90-1.16)	0.02 (.306)	1.02 (0.92-1.12)
Prematurity (compared with term infants)	0.38 (.282)	ND	-0.81 (.109)	0.11 (0.01-1.15)	2.83 (.007) ^a	4.47 (0.48-41.85)	0.38 (.432)	0.96 (0.09–10.38)	-0.23 (.580)	0.68 (0.09-5.25)
Exclusive formula-fed (compared with exclusively breastfed)	-0.10 (.233)	ND	0.24 (.031)	<mark>2.90</mark> (1.22–6.89) ^a	1.03 (.003)ª	<mark>(1.88 (</mark> 1.13-3.11) ^a	0.25 (.027)	<mark>2.22 (</mark> 1.16-4.24)ª	0.056 (.564)	<mark>1.64 (</mark> 1.03-2.60
Antibiotic use by infant (yes/no)	-0.66 (.001)ª	ND	0.06 (.825)	0.57 (0.12-2.66)	0.94 (.324)	0.59 (0.13-2.75)	-1.10 (<.001) ^a	1.30 (0.27-6.19)	-0.16 (.470)	1.11 (0.34-3.63)
Miconazole use by infant (yes/no)	-0.59 (.003) ^a	ND	0.41 (.142)	0.60 (0.13-2.90)	0.04 (.965)	1.01 (0.25-4.09)	0.174 (.506)	1.49 (0.27-8.20)	0.17 (.468)	1.27 (0.38-4.25
Siblings (yes/no)	0.25 (.001) ^a	ND	0.21 (<.025)	1.45 (0.82-2.57)	-0.32 (.277)	1.01 (0.66-1.56)	0.004 (.907)	1.09 (0.68-1.74)	0.01 (.923)	0.88 (0.59-1.29

TABLE 5 Linear Regression Coefficients for Bacterial Counts and ORs for Presence of Gut Bacteria, With Respect to Determinants in Multivariate Analyses

Penders J et al, Pediatrics 2006; 118: 511

Sviluppo della flora batterica intestinale


Human gut microbiome viewed across age and geography

Obiettivo: Esaminare eventuali differenze nel microbioma in diverse popolazioni e età.

Disegno: hanno caratterizzato le specie batteriche in campioni fecali di 531 soggetti sani di differenti aree geografiche.

Risultati

1: In tutte le popolazioni la composizione del microbioma si stabilizza verso i 3 anni di vita.

Yatsunenko T et al, Nature 2012; 486: 222-8

Human gut microbiome viewed across age and geography

Risultati

2 : le variazioni interpersonali sono maggiori nei bambini rispetto agli adulti in tutte le popolazioni (Fig. b)

3: le aree geografiche comportano una variazione nel microbioma, evidenti in tutte le età (Fig c)

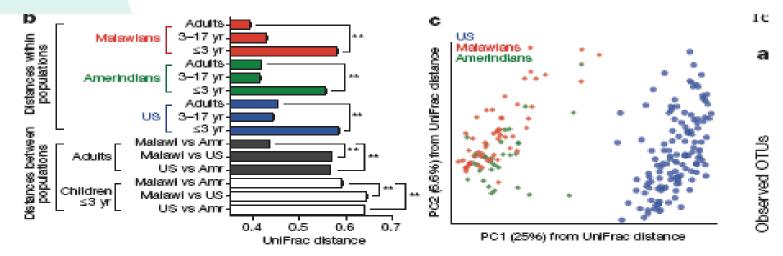


Figure 1 | Differences in the fecal microbial communities of Malawians,

Yatsunenko T et al, Nature 2012; 486: 222-8

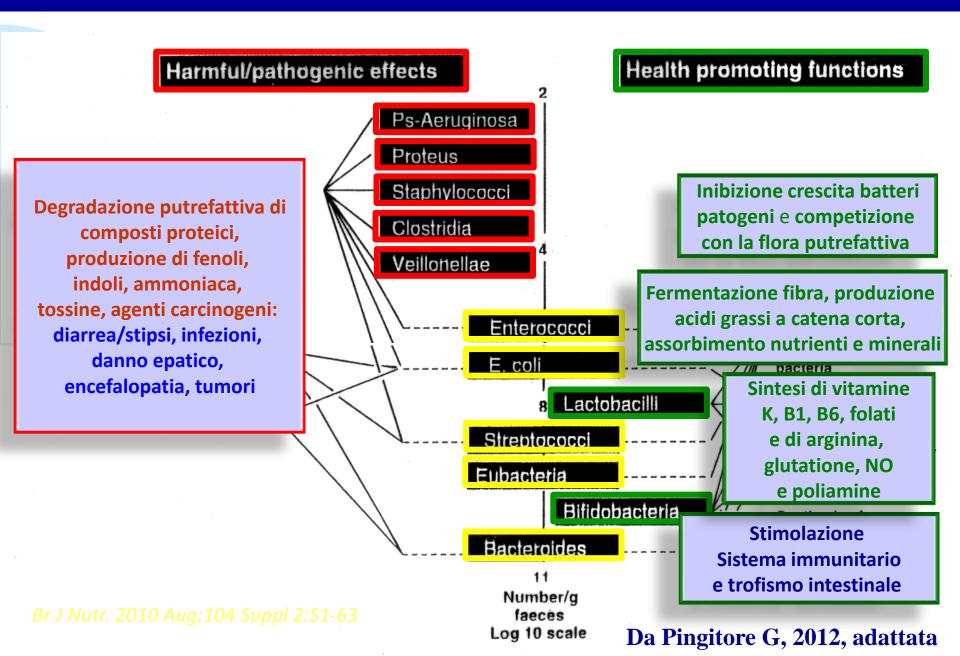
microbiota intestinale

o del microbiota intestinale

Funzioni del microbiota intestinale

Rapporti con le patologie immunomediate

Possibili implicazioni terapeutiche


Difesa dalla colonizzazione da parte di patogeni (produzione di sostenze anti microbiche)

Rinforzo della barriera intestinale (stimolo alla sintesi di IgA)

Facilita l'assorbimento di nutrienti (metabolizzando composti indigeribili)

Guida nella maturazione e indirizzo funzionale del sistema immune dell'ospite

La microflora dell'intestino crasso

microbiota intestinale

o del microbiota intestinale

Funzioni del microbiota intestinale

Rapporti con le patologie immunomediate

Possibili implicazioni terapeutiche

Role of the intestinal microbiome in health and disease: from correlation to causation

Principali patologie correlate con variazioni del microbiota intestinale

Table 1 Intestinal microbiota-associated diseases, syndromes, or other aberrations, with summaries of multiple studies that support an association between the microbiota and the indicated aberration.

Aberration	Most relevant observations and potential correlation	References
Crohn's disease	Diversity decrease – reduced F. prausnitzii	Kaser et al. 2010 ⁵¹ ; Sokol et al. 2009 ⁵² ; Willing et al. 2010 ⁵³
Ulcerative colitis	Diversity decrease – reduced A. muciniphila	Png et al. 2010 ⁵⁴ ; Kaser et al. 2010 ⁵¹ ; Lepage et al. 2011 ⁵⁵
Irritable bowel syndrome	Global signatures – increased Dorea and Ruminococcus	Salonen et al. 2010 ³⁶ ; Saulnier et al. 2011 ⁵⁶ ; Rajilić-Stojanović et al. 2011 ¹³
Clostridium difficile infection	Strong diversity decrease – presence of C. difficile	Grehan et al. 2010 ⁵⁷ ; Khoruts et al. 2010 ⁵⁸
Colorectal cancer	Variation in <i>Bacteroides</i> spp. – increased fusobacteria	Sobhani et al. 2011 ⁵⁹ ; Wang et al. 2012 ⁶⁰ ; Marchesi et al. 2011 ⁶¹
Allergy/atopy	Altered diversity – specific signatures	Stsepetova et al. 2007 ⁶² ; Bisgaard et al. 2011 ⁶³ ; Storrø et al. 2011 ⁶⁴
Celiac disease	Altered composition, notably in small intestine	Nistal et al. 2012 ⁶⁵ ; Di Cagno et al. 2011 ⁶⁶ ; Kalliomäki et al. 2012 ⁶⁷
Type 1 diabetes	Signature differences	Vaarela 2011 ⁶⁸ ; Glongo et al. 2011 ⁶⁹ ; Brown et al. 2011 ⁷⁰
Type 2 diabetes	Signature differences	Larssen et al. 2010 ⁷¹ ; Wu et al. 2010 ⁷² ; Kootte et al. 2012 ⁷³
Obesity	Specific bacterial ratios (<i>Bacteroidetes/Firmicutes</i>)	Ley et al. 2006 ⁷⁴ ; Turnbaugh et al. 2009 ¹⁰ ; Musso et al. 2011 ⁷⁵

De Vos WM, et al Nutr Rev 2012; 7: s45-56

Role of the intestinal microbiome in health and disease: from correlation to causation

Table 2 Indications for associations between the microbiota and health aberrations, provided as an alphabetical listing of the aberrations suggested to be associated with the intestinal microbiota, along with support for such an association.

Disease or aberration	Type of support	Reference*
Alzheimer's disease	Microbiota in a mouse model of Alzheimer's disease	Karri et al. 2010 ¹⁰³
Atherosclerosis	Analysis of plaques in humans	Koren et al. 2011104
Autistic spectrum disorders	Analysis of mucosa in children with autism spectrum disorders	Williams et al. 2011 ¹⁰⁵
Chronic fatigue syndrome	Cultured microbiota in patients with chronic fatigue syndrome	Sheedy et al. 2009 ¹⁰⁶
Colic babies	Longitudinal analysis of colic babies cohort	de Weerth et al. 2012 unpublished data
Cardiovascular disease	Cardiovascular-diseased mice and microbial metabolism	Wang et al. 2011 ⁴⁸
Depression and anxiety	Probiotic intervention in stressed mice	Bravo et al. 2011 ³⁴
Frailty	Analysis of elderly and high frailty scores	van Tongeren et al. 2005 ¹⁰⁷
Graft-vs-host disease	Review of human data on graft-vs-host disease	Murphy et al. 2011 ¹⁰⁸
Multiple sclerosis	Involvement of microbiota in mice with multiple sclerosis	Berer et al. 2011 ¹⁰⁹
Nonalcoholic fatty liver disease	Effect of choline depletion in humans	Spencer et al. 2011 ¹⁰¹
Parkinson's disease	Role of enteric nervous system and review of Parkinson's disease development	Braak et al. 2003 ¹¹⁰
Rheumatoid arthritis	Microbiota as predisposing factor in rheumatoid arthritis	Scher and Abramson 2011 ¹¹¹
Retrovirus Infection	Mouse retrovirus infection relies on microbiota	Kane et al. 2011 ¹¹²
Poliovirus infection	Mouse microbiota promotes poliovirus infection	Kuss et al. 2011 ¹¹³

* The most recent single reference is given.

De Vos WM, et al Nutr Rev 2012; 7: s45-56

Role of the intestinal microbiome in health and disease: from correlation to causation

In most instances, however, this has simply meant an analysis of associations with disease or functional disturbances, and only in special cases are specific correlations described in which specific microbial groups relate to a healthy or a diseased state in a manner that implies a linear relationship. Finally, there are only a handful of examples in which the cause-and-effect relations satisfying Koch's postulates apply, but even these relate mainly to studies in animal models, thereby providing hypotheses for human disease and human intervention tests.

De Vos WM, et al Nutr Rev 2012; 7: s45-56

Effect of barrier microbes on organ-based inflammation

Le MICI potrebbero trarre origine da una inappropriata risposta immune verso il microbiota intestinale e verso l'intestino in soggetti geneticamente predisposti, in conseguenza di fattori ambientali ancora poco definiti.

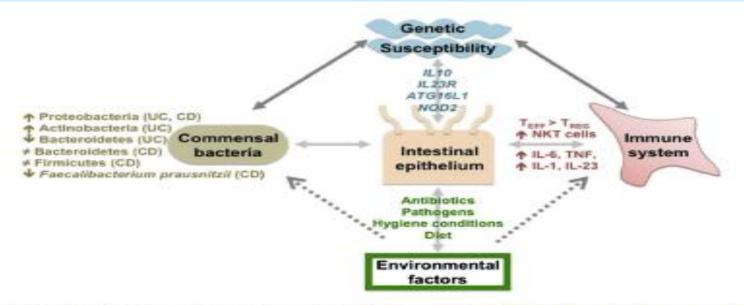


FIG 2. Factors that influence IBD development. IBD is caused by dysfunction in the composition of and interactions between the commensal microbiota, the intestinal epithelium, and the immune system. Each of these factors is under the influence of genetic and environmental factors. *NKT*, Natural killer T cells; *T_{ERF}*, T effector cell; *T_{REG}*, T regulatory cell.

Garn H et al, JACI 2013; 131: 1465-78

Effect of barrier microbes on organ-based inflammation

Allo sviluppo delle malattie allergiche potrebbero contribuire oltre ai fattori genetici diversi fattori ambientali che, condizionando lo sviluppo di una dversa flora batterica intestinale, orientano la risposta immunologica in senso Th-2

Impact of barrier microbes on organ-based inflammation

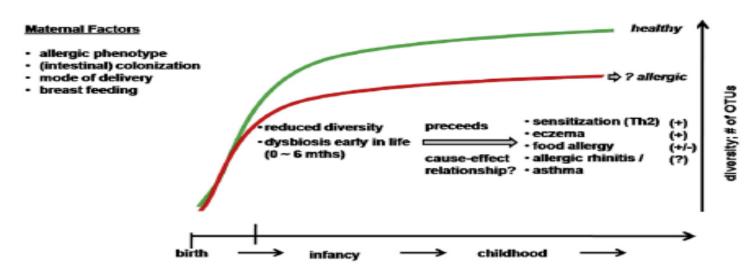


FIG 4. Effect of barrier microbes on organ-based inflammation. Fundamental differences exist between the normal homeostatic colonization pattern and the pattern identified in healthy children (*green*) and intestinal colonization in allergic children (*red*). However, the detailed qualitative and quantitative changes are still inconsistent and might differ for various allergic phenotypes. A common pattern, which is currently emerging, is reduced diversity in allergic subjects that precedes the onset of allergic diseases later on in life. However, a cause-effect relationship needs to be formally established. *OTUs*, Operational taxonomic units.

Garn H et al, JACI 2013; 131: 1465-78

The 'microflora hypothesis' of allergic diseases

As an extension of the hygiene hypothesis, the **'microflora hypothesis of allergic disease**' was postulated to highlight the role of the gut in modulating host immunity in early life and possibly in later life

Noverr MC, et al. Clin Exp Allergy 2005;35:1511-20

Effect of barrier microbes on organ-based inflammation

TABLE III. Open questions

- Does a cause-effect relationship exist between dysbiosis and allergic phenotypes/intestinal inflammation?
- What causes dysbiosis? Candidates include host genetics, environmental factors, or both.
- Is dysbiosis the result of a loss of protective microbes or the acquisition of disease-promoting strains?
- How can dysbiosis be corrected?
- Does intestinal dysbiosis contribute to allergic manifestations outside the gut, and, if so, how?
- Does lung dysbiosis contribute to allergic manifestations outside the lung and perhaps to intestinal inflammation?
- How stable is dysbiosis over time?
- What are the reasons for heterogenic results between the studies?

Garn H et al, JACI 2013; 131: 1465-78

microbiota intestinale

o del microbiota intestinale

Funzioni del microbiota intestinale

Rapporti con le patologie immunomediate

Possibili implicazioni terapeutiche

Intestinal microbiota in functional bowel disorders: a Rome foundation report

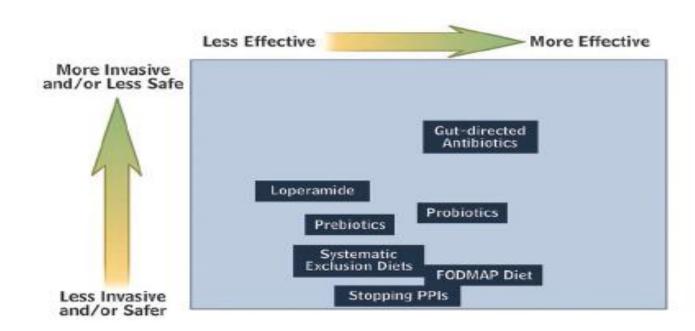


Figure 4 Plot chart of currently available strategies for modifying gut microbiota aiming to demonstrate the relationship between the effectiveness and invasiveness/ safety of the proposed approach. FODMAP, fermentable oligo-, di- and mono-saccharides and polyols; PPI, proton pump inhibitor.

Simren M et al, Gut 2013; 62: 159-76

LINEE GUIDA PROBIOTICI E PREBIOTICI

Probiotici

quei microrganismi che, introdotti con l'alimento, siano in grado di raggiungere l'intestino in condizioni di vitalità ed esercitare una azione salutistica sull'organismo

Prebiotici

Sono parti di alimenti non digeribili o non completamente digeribili, che stimolano selettivamente la crescita e le attività dei lattobacilli o dei bifidobatteri, principali costituenti dell'ecosistema intestinale nei bambini allattati al seno

Simbiotici

Associazione di un probiotico con prebiotici

Da Pingitore G 2012, adattata

Actual concept of "probiotics": Is it more functional to science or business?

Today probiotics represent a very big business. The global functional food market has been recently estimated at up to \$50 billion annual share, while the world probiotic market is estimated at \$15 billion. Today, this market is growing at a pace of 5%-30% depending on the country and product type.

The European Commission has recognized probiotic bacteria as having the status of nutrients; in addition probiotics in powder, capsule or tablet form are in most European countries regarded as "food supplements"..

Thus, in most cases, these products reach the market without being tested in the expensive three phases required for approval of a new drug.

Caselli G et al, World J Gastroenterol 2013; 19: 1527-40

Actual concept of "probiotics": Is it more functional to science or business?

Table 3 Results of clinical trials with probiotics in patients with Crohn's disease

Ref.	Patients (n)	Duration of therapy	Probiotic strains	Dose (CFU/d)	Outcomes
Malchow et al ^[135]	24	3 mo	Escherichia coli Nissle 1917	2.5×10^{10}	Maintaining the remission
Guslandi et al ^[136]	32	6 mo	Saccharomyces boulardii	1g	Postsurgical prevention of CD recurrence
					(relapse rate probiotic+ 5-ASA vs 5-ASA alone)
Prantera et al ^[137]	45	1 yr	Lactobacillus GG	12×10^{9}	Postsurgical prevention of CD recurrence (no effects)
Schultz al ^[138]	11	6 mo	Lactobacillus GG	2×10^{9}	Probiotics are not superior to placebo in maintaining
					remission
Bousvaros et al ^[139]	75	1 yr	Lactobacillus GG	2×10^{10}	Probiotics are not superior to placebo in maintaining
					remission
Marteau et al ^[140]	98	6 mo	Lactobacillus johnsonii	4×10^9	Postsurgical prevention of CD recurrence
					(recurrence rate decreased VS placebo)
Chermesh et al ^[141]	30	24 mo	Synbiotic 2000 (Pediococcus pentoseceus,	1011	Postsurgical prevention of CD recurrence (NS)
			Lactobacillus raffinolactis, Lactobacillus paracasi		
			susp paracsei, Lactobacillusplantarum 2362)		
			and 4 fermentable fibers <i>vs</i> placebo		
Van Gossum et al ^[142]	70	12 wk	Lactobacillus johnsonii or placebo	10^{10}	Postsurgical prevention of CD recurrence (NS)
Rolfe et al ^[143]	7 RCTs				No benefit of probiotics in the maintenance of
					remission of CD
Rahimi et al ^[144]	8 RCTs				None benefit for probiotic treatment in the
					maintenance of clinical remission of CD

Caselli G et al, World J Gastroenterol 2013; 19: 1527-40

Actual concept of "probiotics": Is it more functional to science or business?

Table 2 Results of clinical trials with probiotics in ulcerative colitis

Ref.	Patients (n)	Duration of therapy	Probiotic strains	Dose (CFU/d)	Outcomes
Kruis et al ^[118]	120	12 wk	Escherichia coli Nissle 1917	50×10^{10}	Maintaining the remission (similar to 5-ASA)
Rembacken	116	1 yr	Escherichia coli Nissle 1917	5×10^{10}	Induction of remission (similar to 5-ASA);
et al ^[119]					maintaining of relapses (similar to 5-ASA)
Venturi et al ^[120]	20	1 yr	VSL3®	5×10^{11}	Maintaining the remission
Ishikawa et al ^[121]	21	1 yr	Milk with bifidobacteria	$10 imes 10^8$	Maintaining the remission
Guslandi et al ^[122]	25	4 wk	Saccharomyces boulardii	250 mg × 3	Induction of remission
Kruis et al ^[123]	327	1 yr	Escherichia coli Nissle 1917	$2.5-25 \times 10^{9}$	Induction of remission (5-ASA better than probiotic)
Tursi et al ^[124]	90	8 wk	Balsalazide/VSL3®	900×10^{8}	Induction of remission
Cui et al ^[125]	30	8 wk	Bifidobacteria	1.26 g/d	Maintaining of remission
Kato et al ^[126]	20	12 wk	<i>Bifidobacterium-</i> fermented milk <i>vs</i> placebo	10 ⁹	CDAI lower in Bifidobacterium fermented milk that in placebo
Furrie et al ^[127]	18	4 wk	Bifidobacterium longum + prebiotic (Synergy 1)	$4 imes 10^{11}$	Induction of remission
Bibiloni et al ^[128]	32	6 wk	VSL3®	1800 billion × 2	Induction of remission
Zocco et al ^[129]	187	12 mo	Lactobacillus GG vs mesalazina	$18 imes 10^9$	No difference between the treatment groups
Henker et al ^[130]	34	12 mo	Escherichia coli Nissle 1917	5×10^{10}	Maintenance of remission
Miele et al ^[131]	29	12 mo	VSL3®	$450-1800 imes 10^{9}$	Induction of remission
					(92.8% in treated with VSL3® and 36.4% in the placebo group)
Sood <i>et al</i> ^[132]	147	12 wk	VSL3®	3.6×10^{12}	Induction of remission (42.9% against 15.7% in the placebo group)
Matthes et al ^[133]	57	4 wk	Escherichia coli Nissle 1917	$10-40 imes 10^8$	Induction of remission
Sang et al ^[134]	13 RCT	s			Heterogenity between the studies in their methodology and results

Caselli G et al, World J Gastroenterol 2013; 19: 1527-40

Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Probiotics in Chronic Inflammatory Bowel Disease and the Functional Disorder Irritable Bowel Syndrome

"Selected probiotics strains have been proven to be clinically effective in maintaining remission in patients with ulcerative colitis. None of the probiotics thus far tested has been shown to be effective in induction of remission or in maintenance of remission in patients with Crohn's disease...."

Haller D et al, J Nutr 2010; 140: 690s-9s

Probiotic milk consumption in pregnancy and infancy and subsequent childhood allergic diseases

Metodo: studio effettuato mediante questionari su una coorte di 108.000 bambini Norvegesi, indagando il consumo materno durante la gravidanza di alimenti contenenti probiotici e il consumo del bambino di probiotici dopo i primi 6 mesi di vita.

TABLE II. Association between maternal probiotic milk and yogurt consumption in patients with pregnancy and atopic eczema, rhinoconjunctivitis, and asthma among 40,614 children in MoBa whose mothers had completed the 6-, 18-, and 36-month postnatal questionnaires

	Cases (no.)	Cases (%)*	Unadjusted RR (95% CI)	Adjusted† RR (95% Cl)	Adjusted‡ RR (95% CI)
Atopic eczema at 6 mo	4,849	12.2	0.94 (0.89-1.00)	0.93 (0.88-0.99)	0.94 (0.89-0.99)
Current atopic eczema at 18 mo	5,440	13.6	0.99 (0.94-1.04)	1.00 (0.94-1.05)	1.00 (0.95-1.05)
Rhinoconjunctivitis at 18-36 mo	1,425	3.6	0.85 (0.76-0.95)	0.90 (0.81-1.00)	0.87 (0.78-0.98)
Current asthma at 36 mo with asthma medication	2,260	5.7	0.97 (0.90-1.05)	0.99 (0.91-1.08)	0.99 (0.91-1.08)

*There were missing outcome data for the following: atopic eczema at 6 months (2.1%), current atopic eczema at 18 months (1.3%), rhinoconjunctivitis at 18 to 36 months (2.9%), and current asthma at 36 months with asthma medication (2.6%). The case percentage is calculated with the total N in the denominator with no missing information. †Adjusted for maternal age, smoking in pregnancy, maternal education, prepregnancy BMI, and dietary fiber intake (in grams per 10 MJ). ‡Additional adjustment for total energy intake (in MJ per day), breast-feeding, maternal history of allergic disease, parity, infant's sex, and mode of delivery (cesarean section vs vaginal).

Il consumo materno durante la gravidanza avrebbe un debole effetto protettivo verso l'eczema a 6 mesi e rinocongiuntivite a 18-36 mesi

Bertelsen RJ et al, JACI 2014; 133: 165-71

Probiotic milk consumption in pregnancy and infancy and subsequent childhood allergic diseases

TABLE III. Association between consumption of probiotic milk products by the child only, mother only (in pregnancy), and both the mother and child and atopic eczema, rhinoconjunctivitis, and asthma among 40,614 children in MoBa who had completed the 6-, 18-, and 36-month postnatal questionnaires

		Current a	topic eczema at 18 m o	Rhinocon	junctivitis at 18-36 mo	Current asthma with asthma medication at 36 mo	
Probiotic milk products	No.	Cases (%)	Adjusted* RR (95% CI)	Cases (%)	Adjusted* RR (95% Cl)	Cases (%)	Adjusted* RR (95% CI)
No intake (reference)	18,572	13.6	1	3.9	1	5.8	1
Child intake only	7,000	13.6	1.01 (0.94-1.08)	3.7	0.98 (0.85-1.13)	5.9	1.08 (0.96-1.21)
Mother intake only	7,437	14.6	1.08 (1.01-1.15)	3.6	0.94 (0.81-1.08)	5.3	0.96 (0.85-1.08)
Mother and child	7,605	12.5	0.93 (0.86-1.00)	3.0	0.80 (0.68-0.93)	5.8	1.07 (0.95-1.19)

*Adjusted for maternal age, smoking in pregnancy, maternal education, prepregnancy BMI, dietary fiber intake (grams per 10 MJ), total energy intake (MJ per day), breast-feeding, maternal history of allergic disease, parity, infant's sex, and mode of delivery.

Solo il consumo sia materno in gravidanza che del bambino dopo il sesto mese avrebbero un lieve effetto protettivo sullo sviluppo di eczema a 18 mese e di rinocongiuntivite a 18-36 mesi

Bertelsen RJ et al, JACI 2014; 133: 165-71

Primary Prevention of Allergic Disease Through Nutritional Interventions

SELECTION OF INFANT FORMULA FOR PRIMARY PREVENTION OF ALLERGIC DISEASE IN THE CHILDREN

pHFs versus extensive casein or extensive whey hydrolysate formulas (ehF). A meta-analysis of 2 studies found no significant difference between a pHF and an eHF in the development of infant allergic diseases, including asthma and food allergy.65,66 One large study found that hydrolyzed formulas, especially the extensively hydrolyzed casein formulas, have the potential to reduce the risk of atopic dermatitis up to age 6 years when used as a supplement or substitute to breast milk instead of conventional cow's milk formulas during the first 4 months of life. No effect was observed on asthma and food allergy.67-69 Additional prospective trials, also in high-risk infants, are needed to confirm the potential benefits of pHFs or eHFs and to determine whether the benefits persist later into childhood, adolescence, or adulthood

Fleisher DM et al, J Allergy Clin Immunol in Practice 2013; 1: 29-36

Primary Prevention of Allergic Disease Through Nutritional Interventions

SELECTION OF INFANT FORMU RY **PREVENTION** E le formule con i **CHILDREN** Soy formule probiotici? (elemental The evidence Studies of a this time **Fleisher DMPet al, J** Allergy Clin Immunol in Practice 2013; 1: 29-36

Probiotics and allergy in children An update review

We reviewed recent randomized, double-blinded, placebocontrolled clinical trials using probiotics for allergic diseases of children and evaluated their clinical efficacy, possible mechanisms, dosage, and safety for managing allergic diseases of children. The current data are insufficient to strongly recommend probiotics as a standard treatment or preventative measure for pediatric allergic disease. More studies are needed to standardize study designs, bacterial strains, dosages, and durations for different allergic diseases of children

Pan SJ et al, Pediatr Allergy Immunol 2010; 21: e659-66

Clinical Use of Probiotics in Pediatric Allergy: A World Allergy Organization Position Paper

Conclusions: Probiotics do not have an established role in the prevention or treatment of allergy. No single probiotic supplement or class of supplements has been demonstrated to efficiently influence the course of any allergic manifestation or long-term disease or to be sufficient to do so.

Fiocchi A et al, WAO Journal 2012; 5: 148-67

Probiotic supplementation during pregnancy or infancy for the prevention of asthma and wheeze: systematic review and meta-analysis

Conclusions We found no evidence to support a protective association between perinatal use of probiotics and doctor diagnosed asthma or childhood wheeze. Randomised controlled trials to date have not yielded sufficient evidence to recommend probiotics for the primary prevention of these disorders. Extended follow-up of existing trials, along with further clinical and basic research, are needed to accurately define the role of probiotics in the prevention of childhood asthma

Banting MBA et al, BMJ 2013; 347:6471

Grazie per l'attenzione...